Artificial Intelligence in Music Education.
Systematic Analysis of Computational Research
Keywords:
Artificial intelligence, Atenttion to diversity, Musical education, Computational research, PRISMAAbstract
This study presents a systematic review of research published between 2015 and 2024 on the application of artificial intelligence (AI) in music education, with special attention to its potential to address student diversity. The main objective is to offer a comprehensive view of computational resources and their usefulness in processes such as composition, music analysis, auditory recognition, and learning personalization. The methodology is based on PRISMA guidelines, applying rigorous inclusion and exclusion criteria. A search was conducted in academic databases such as Web of Science, JSTOR, Scopus, and ERIC-EBSCO, using combinations of keywords related to AI, music education, and attention to diversity. After eliminating duplicates and applying the defined filters, eleven studies that met the established requirements were selected. The most notable conclusion is the potential of AI to enrich music teaching and its interest in inclusive reinforcement and in the personalization of the learning process. It is also worth noting that, as motivating and attractive as the benefits of AI may be, this study shows that teaching is necessary and irreplaceable.
Downloads
References
Barroso-Moreno, C., Mendoza-Carretero, M. R., Sáenz-Rico de Santiago, B., y Rayón-Rumayor, L. (2024). Gamification-Education: the power of data. Teachers in social networks. [Gamificación-educación: el poder del dato. El profesorado en las redes sociales]. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), pp. 373-396. https://doi.org/10.5944/ried.27.1.37648
Castañeda, L., Esteve, F., y Adell, J. (2018). ¿Por qué es necesario repensar la competencia docente para el mundo digital? Revista de Educación a Distancia, 56, 1-20. https://doi.org/10.6018/red/56/6
Colás-Bravo, P., Conde-Jiménez, J., y Reyes-de-Cózar, S. (2019). The development of the digital teaching competence from a sociocultural approach. Comunicar, 27(61), 21–32. Retrieved from https://www.revistacomunicar.com/ojs/index.php/comunicar/article/view/C61-2019-02
Crompton, H., y Burke, D. (2023). Artificial intelligence in higher education: the state of the field. Revista Internacional de Tecnología Educativa en la Educación Superior, 20(1), 1– 22. https://doi.org/10.1186/s41239-023-00392-8
Dúo, P, Moreno, A.J., López, J. y Marín, J. A. (2023). Inteligencia Artificial y Machine Learning como recurso educativo desde la perspectiva de docentes en distintas etapas educativas no universitarias. RiiTERevista interuniversitaria de investigación en tecnología educativa, 15, 58-78. https://doi.org/10.6018/riite.579611
Guo, D., Zhang, D., Fyr, K., & Yu, S. (2024). A Style and Attention Mechanism Based Generative Adversarial Neural Network (Style-Atten GAN) for Flute Music Composition. In 2024 IEEE 9th International Conference on Computational Intelligence and Applications, ICCIA 2024 (pp. 42-47). (2024 IEEE 9th International Conference on Computational Intelligence and Applications, ICCIA 2024). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICCIA62557.2024.10719094
Holster, J. (2024). Augmenting Music Education through AI: Practical Applications of ChatGPT. Music Educators Journal, 110(4), 36-42. https://doi.org/10.1177/00274321241255938
Hong Yun, Z., Alshehri, Y., Alnazzawi, N. et al. A decision-support system for assessing the function of machine learning and artificial intelligence in music education for network games. Soft Compututing 26, 11063–11075 (2022). https://doi.org/10.1007/s00500-022-07401-4
Lee, S.J. and Kwon, K. (2024). A systematic review of AI education in K-12 classrooms from 2018 to 2023: Topics, strategies, and learning outcomes. Computers and Education: Artificial Intelligence, 6. https://doi.org/10.1016/j.caeai.2024.100211
Lin, L. (2023). Research on the Comparative Development of Modern Popular Music and Traditional Music Culture in Colleges and Universities in the Age of Artificial Intelligence. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-19.https://doi.org/10.2478/amns.2023.2.01359
Luzuriaga, M., Buscaglia, A., y Furman, M. (2022). Real Educational Challenges: transformations of a university subject in the context of the pandemic. REDU. Revista de Docencia Universitaria, 20(1), 69-90. https://doi.org/10.4995/redu.2022.16653
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D., Yepes-Nuñez, J.J., Urrútia, G., Romero-García, M., y Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016
Prendes-Espinosa, M., García-Tudela, P., y Solano-Fernández, I. (2020). Gender equality and ICT in the context of formal education: a systematic review. (Igualdad de género y TIC en contextos educativos formales: Una revisión sistemática). Comunicar, 28, 9-20. https://doi.org/10.3916/C63-2020-01
Qiusi, M. (2022). Research on the Improvement Method of Music Education Level under the Background of AI Technology. Mobile Information Systems, 1-8. https://doi.org/10.1155/2022/7616619
Villa, A. (2020). Competence-based learning: development and implementation in the university field. REDU. Revista de Docencia Universitaria, 18(1), 19-46. https://doi.org/10.4995/redu.2020.13015
Tian, B. (2024). Innovative applications of AI and virtual reality in music-based cultural heritage: enhancing athletic training and performance. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte, 24 (96) pp. 434-450. https://doi.org/10.15366/rimcafd2024.96.026
Touretzky, D., Gardner-McCune, C. y Seehorn, D. (2023). Aprendizaje automático y los cinco Grandes ideas en IA. Revista Internacional de Inteligencia Artificial en Educación, 33(2), 233–266. https://doi.org/10.1007/s40593-022-00314-1
Villa, A. (2020). Competence-based learning: development and implementation in the university field. REDU. Revista de Docencia Universitaria, 18(1), 19-46. https://doi.org/10.4995/redu.2020.13015
Wei, J.; Marimuthu, K.; Prathik, A. (2022). College music education and teaching based on AI techniques. Computers and Electrical Engineering, 100. https://doi.org/10.1016/j.compeleceng.2022.107851
Yuan, N. (2024). Does AI-assisted creation of polyphonic music increase academic motivation? The DeepBach graphical model and its use in music education. Journal of Computer Assisted Learning, 40(4), 1365–1372. https://doi.org/10.1111/jcal.12957
Zhou, W., y Kim, Y. (2024). Innovative music education: An empirical assessment of ChatGPT-4’s impact on student learning experiences. Education and Information Technologies, 29(5). https://doi.org/10.1007/s10639-024-12705-z
Zhu, K. (2023). An Initial Exploration of New Approaches to Sight Singing and Ear. Reviews of Adhesion and Adhesives 11(3), 333-345. https://raajournal.com/menuscript/index.php/raajournal/article/view/508/513
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vicenta Gisbert Caudeli

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
RIDAIM utiliza un sistema de licencia CC Reconocimiento-NoComercial-SinObrasDerivadas 4.0