Artificial Intelligence in Music Education.

Systematic Analysis of Computational Research

Authors

  • Vicenta Gisbert Caudeli Universidad Autónoma de Madrid

Keywords:

Artificial intelligence, Atenttion to diversity, Musical education, Computational research, PRISMA

Abstract

This study presents a systematic review of research published between 2015 and 2024 on the application of artificial intelligence (AI) in music education, with special attention to its potential to address student diversity. The main objective is to offer a comprehensive view of computational resources and their usefulness in processes such as composition, music analysis, auditory recognition, and learning personalization. The methodology is based on PRISMA guidelines, applying rigorous inclusion and exclusion criteria. A search was conducted in academic databases such as Web of Science, JSTOR, Scopus, and ERIC-EBSCO, using combinations of keywords related to AI, music education, and attention to diversity. After eliminating duplicates and applying the defined filters, eleven studies that met the established requirements were selected. The most notable conclusion is the potential of AI to enrich music teaching and its interest in inclusive reinforcement and in the personalization of the learning process. It is also worth noting that, as motivating and attractive as the benefits of AI may be, this study shows that teaching is necessary and irreplaceable.

Downloads

Download data is not yet available.

References

Barroso-Moreno, C., Mendoza-Carretero, M. R., Sáenz-Rico de Santiago, B., y Rayón-Rumayor, L. (2024). Gamification-Education: the power of data. Teachers in social networks. [Gamificación-educación: el poder del dato. El profesorado en las redes sociales]. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), pp. 373-396. https://doi.org/10.5944/ried.27.1.37648

Castañeda, L., Esteve, F., y Adell, J. (2018). ¿Por qué es necesario repensar la competencia docente para el mundo digital? Revista de Educación a Distancia, 56, 1-20. https://doi.org/10.6018/red/56/6

Colás-Bravo, P., Conde-Jiménez, J., y Reyes-de-Cózar, S. (2019). The development of the digital teaching competence from a sociocultural approach. Comunicar, 27(61), 21–32. Retrieved from https://www.revistacomunicar.com/ojs/index.php/comunicar/article/view/C61-2019-02

Crompton, H., y Burke, D. (2023). Artificial intelligence in higher education: the state of the field. Revista Internacional de Tecnología Educativa en la Educación Superior, 20(1), 1– 22. https://doi.org/10.1186/s41239-023-00392-8

Dúo, P, Moreno, A.J., López, J. y Marín, J. A. (2023). Inteligencia Artificial y Machine Learning como recurso educativo desde la perspectiva de docentes en distintas etapas educativas no universitarias. RiiTERevista interuniversitaria de investigación en tecnología educativa, 15, 58-78. https://doi.org/10.6018/riite.579611

Guo, D., Zhang, D., Fyr, K., & Yu, S. (2024). A Style and Attention Mechanism Based Generative Adversarial Neural Network (Style-Atten GAN) for Flute Music Composition. In 2024 IEEE 9th International Conference on Computational Intelligence and Applications, ICCIA 2024 (pp. 42-47). (2024 IEEE 9th International Conference on Computational Intelligence and Applications, ICCIA 2024). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICCIA62557.2024.10719094

Holster, J. (2024). Augmenting Music Education through AI: Practical Applications of ChatGPT. Music Educators Journal, 110(4), 36-42. https://doi.org/10.1177/00274321241255938

Hong Yun, Z., Alshehri, Y., Alnazzawi, N. et al. A decision-support system for assessing the function of machine learning and artificial intelligence in music education for network games. Soft Compututing 26, 11063–11075 (2022). https://doi.org/10.1007/s00500-022-07401-4

Lee, S.J. and Kwon, K. (2024). A systematic review of AI education in K-12 classrooms from 2018 to 2023: Topics, strategies, and learning outcomes. Computers and Education: Artificial Intelligence, 6. https://doi.org/10.1016/j.caeai.2024.100211

Lin, L. (2023). Research on the Comparative Development of Modern Popular Music and Traditional Music Culture in Colleges and Universities in the Age of Artificial Intelligence. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-19.https://doi.org/10.2478/amns.2023.2.01359

Luzuriaga, M., Buscaglia, A., y Furman, M. (2022). Real Educational Challenges: transformations of a university subject in the context of the pandemic. REDU. Revista de Docencia Universitaria, 20(1), 69-90. https://doi.org/10.4995/redu.2022.16653

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D., Yepes-Nuñez, J.J., Urrútia, G., Romero-García, M., y Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Prendes-Espinosa, M., García-Tudela, P., y Solano-Fernández, I. (2020). Gender equality and ICT in the context of formal education: a systematic review. (Igualdad de género y TIC en contextos educativos formales: Una revisión sistemática). Comunicar, 28, 9-20. https://doi.org/10.3916/C63-2020-01

Qiusi, M. (2022). Research on the Improvement Method of Music Education Level under the Background of AI Technology. Mobile Information Systems, 1-8. https://doi.org/10.1155/2022/7616619

Villa, A. (2020). Competence-based learning: development and implementation in the university field. REDU. Revista de Docencia Universitaria, 18(1), 19-46. https://doi.org/10.4995/redu.2020.13015

Tian, B. (2024). Innovative applications of AI and virtual reality in music-based cultural heritage: enhancing athletic training and performance. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte, 24 (96) pp. 434-450. https://doi.org/10.15366/rimcafd2024.96.026

Touretzky, D., Gardner-McCune, C. y Seehorn, D. (2023). Aprendizaje automático y los cinco Grandes ideas en IA. Revista Internacional de Inteligencia Artificial en Educación, 33(2), 233–266. https://doi.org/10.1007/s40593-022-00314-1

Villa, A. (2020). Competence-based learning: development and implementation in the university field. REDU. Revista de Docencia Universitaria, 18(1), 19-46. https://doi.org/10.4995/redu.2020.13015

Wei, J.; Marimuthu, K.; Prathik, A. (2022). College music education and teaching based on AI techniques. Computers and Electrical Engineering, 100. https://doi.org/10.1016/j.compeleceng.2022.107851

Yuan, N. (2024). Does AI-assisted creation of polyphonic music increase academic motivation? The DeepBach graphical model and its use in music education. Journal of Computer Assisted Learning, 40(4), 1365–1372. https://doi.org/10.1111/jcal.12957

Zhou, W., y Kim, Y. (2024). Innovative music education: An empirical assessment of ChatGPT-4’s impact on student learning experiences. Education and Information Technologies, 29(5). https://doi.org/10.1007/s10639-024-12705-z

Zhu, K. (2023). An Initial Exploration of New Approaches to Sight Singing and Ear. Reviews of Adhesion and Adhesives 11(3), 333-345. https://raajournal.com/menuscript/index.php/raajournal/article/view/508/513

Published

2025-09-30